CSE 1061 Introduction to Computing
Lecture 3

Week 2

Fall 2015

Department of Computing
The School of EE & Computing
Adama Science & Technology University

REVIEW

Characteristics of Python

Instruction set

Arithmetic and logical operations —
+, -, %, /, and ** _ for defining
and, or, not expressions

Assignment
Conditionals
Iterations
Input/output

No pointers
No declarations

e A small grid-like 2D world

Basic actions
move (). moving one grid forward
turn_left (): turning left by 90°
pick_beeper(): pick ing up beepers
drop_beeper(): putting down beepers

Our own instructions: functions

Comments

OUTLINE

Conditionals
Iterations
for loops
while_loops

Reading assignment of the text book :
Chapter 4 Conditionals and recursion
Chapter 6 Iteration

CONDITIONALS

if <condition> :

True block

else:

False block

<condition> has a “True” or “False” value, representing true or false, respectively

If it is true, the True block is executed; otherwise, the False block is executed.

What will be printed ?

if True:
print “CSE1061 is my favorite course”
else:
print "Every pre student will receive an A+"

Nn\u An vinii nindorctranAd?
v"’ A [~ A

A S]vu AT T L] AT TA

print " CSE1061 is my favorite course”
else:
print "Every pre student will receive an A+“

Now, what will happen?
if False:
print “Every pre student will receive an A+“

The keyword not inverts the sense of the condition: not Tr
ue is False, and not False is True.

What is the output?

>>print not 3 < 5

SENSING A BEEPER

We want Hubo to make 9 steps and pick all beepers ont

he way. However, we do not know where beepers are. If th
ere is no beeper at a grid point, then hubo.pick beep
er() causes an error.

How to sense a beeper?

Use hubo.on_beeper()

Move and pick a beeper if a
ny.
Take a step forward.

Check if there is a beep

def move and pick():
hubo.move()
if hubo.on beeper():
hubo.pick beeper()

Ftove forward 9 steps.
fy&a @icletepp. move
and pick up a
beeper

if any.

INp False block!!

for i in range(9):
move and pick()

Let’'s do the opposite: we want to drop a beeper, but only
If there is no beeper at the current location.

If not hubo.on_beeper():

hubo.drop beeper()

Ex) Program: “0 move_and pick.py”

FOLLOWING THE BOUNDARY

Hubo tries to follow the boundary of the world: He moves forward if there is no
wall; otherwise, turn to the left.

from cslrobots import *
create_world(avenues =5, streets = 5)
hubo = Robot()

hubo set trace(”blue”)

def move_or_turn():
if hubo.front is_clear():

hubo.move()

else:
hubo.turn_left()

for i in range(20): Why 20 ?

move_or_turn()

MOVING AND DANCING
hubo =Robot(beeper=5)

def dance():
for 1 in range(4):
hubo.turn_left()

def move_or _turn():

If hubo.front_is_clear():
dance()
hubo.move()

else:
hubo.turn_left()
hubo.drop beeper()

For i in range(18):
move_or_turn() ## Ex: 1
dancing.py

MULTIPLE CHOICES

elif combines else and if to express many alternatives without complicat

ed indentation.

if hubo.on beeper():

hubo.pick beeper()

elif hubo.front_is clear():

hubo.move()
elif hubo.left_1is clear():
hubo.turn_left()

elif hubo.right is clear():

turn _right()
else:

turn around()

else:
if hubo.front_is clear():
hubo.move()
else:
iIf hubo.left_is _clear():

hubo.move()

MULTIPLE CHOICES

@) ASTU

elif combines else and if to express many alternatlves without complicat

ed indentation.

if hubo.on beeper():

hubo.pick beeper()

elif hubo.front_is clear():

hubo.move()
elif hubo.left _is clear():
hubo.turn_left()

elif hubo.right is clear():

turn _right()
else:

turn around()

on_beeper
= TRUE 2

Yes

v

hubo.pick _beeper()

ront_is _clea
= TRUE 2

Yes

Y

hubo.move()

eft is _clear
<. TRUE ?

Yes

Y

hubo.turn_left(

turn_around()

v 14

WHILE-LOOPS

while <condition>:
block

The block is executed as long as <condition> is True;

otherwise, it is skipped.

A while-loop repeats instructions as long as a condition is true.
while not hubo.on beeper():

|

hubo . move () |Move forward as

long as there is no

- Lbeeper
A for-loop repeats some instructions a fixed number of times.

for 1 in range(9):
hubo.move()

Let’s write a program to let the robot walk around the boundary
of the world until he comes back to the starting point

Think your solution for this problem ¢
your method [
your Algorithm for solving a problem !!

1. Put down a beeper to mark the
starting point

2. Repeat steps 3 and 4 while no
beeper

found
3. If not facing a wall, move forward
4. Otherwise, turn left

5. Finish when we found the beeper

hubo.drop beeper()
hubo.move() Why this?
while not hubo.on_beeper():
If hubo.front is clear():
hubo.move()
else:
hubo.turn_left()
hubo.turn_left()

Does this program always work?

How about this case?

[~

Robaot World: ama'iiﬁ' 32wl

Sometimes we need a ri
turn!

ht

hubo.drop beeper()
hubo.move()
while not
hubo.on beeper():
if
hubo.front 1s clear():
hubo.move()
else:
hubo.turn left()
hubo.turn left()

Try the code in the previous
page with "amazing2.wld” and
see if the previous code works.

CSE 1061 19

Does this work?

hubo.drop beeper()
hubo.move()

while not hubo.on beeper():

if
hubo.right 1s clear():
turn right()
elif
hubo.front is clear():
hubo.move()
else:
hubo.turn left()
hubo.turn left()

Infinite loop!

How about this?

hubo.drop beeper()
hubo.move()
while not hubo.on beeper():

it hubo.right_1is clear(): ,

turn right()
hubo.move ()
elif
hubo.front is clear():
hubo.move ()
else:
hubo.turn left()

Does this always work?

How about this
case?

hubo.drop beeper()
hubo.move()
while not hubo.on beeper():
if hubo.right is clear():
turn right()
hubo.move()
elif
hubo.front is clear():
hubo.move()
else:
hubo.turn left()

Does this work? hubo.drop beeper()
while not

. hubo.front 1is clear():
hubo.turn left()
hubo.move()
while not hubo.on beeper():
if hubo.right is clear():
turn right()
hubo.move()

Robeot World: EW&M

- %] (%] o n [y} |

elif
& hubo.front 1s clear():
. i % B 4 & ® i hubo.move()
else:

wwwwwwwwwwwwwwwwwww hubo.turn left()
Hubo.turn left()

Still not perfect !
Very sensitive to the initial position of

hubo.drop beeper()

while not

hubo.front is_clear():
hubo.turn_left()

def
mark and move():

hubo.movel()

while not
hubo.on_beeper():

If hubo.right_is clear():

turn_right()
hubo.move()
elif
hubo.front is_clear():

hubo.movel()
else:

_

<

— def follow wall():

mark and move()

while not
hubo.on beeper

()
follow wall()
()

habo—turn—teft

A\ I

hubo.turn_left()
Hubo.turn_left()

COMMENTS FOR HUMANS

One of the secrets of writing good, correct, elegant p
rograms is to write them as if you wrote them for a hu
man reader, not a computer. Let’'s clean up our program

How ? By adding comments !

ann

This program lets the robot go around his world counter-
clockwise, stopping when he comes back to his starting point.

aunn

#Turn right.
def turn right():
for i in range(3):
hubo.turn left()
#Mark the starting point and move
def mark and move():
hubo.drop beeper()
while not hubo.front is clear():
hubo.turn left()
hubo.move()

(continued)

#Follow the wall at each iteration.
def follow wall():
if hubo.right is clear():

turn

right to follow the wall

right turn()

hubo

.move ()

elif hubo.front is clear():

move
hubo

else:
turn
hubo

(continued)

forward while following the wall
.move()
left to follow the wall

turn_left()

#Begin actual move.
mark and move()

#Follow the entire wall.

while not hubo.on beeper():

follow wall()
Hubo.turn left()

@) AsTU

STEPWISE REFINEMENT

1. Start with a primitive program that solves a simple pr
oblem.

2. Make small changes, one at a time to generalize the pr
ogram.

3. Make sure that each change does not invalidate what
you have done before.

4. Add appropriate comments (not just repeating what the
instruction does).

5. Choose descriptive names.

	Slide 1
	REVIEW
	Slide 3
	OUTLINE
	CONDITIONALS
	
	
	SENSING A BEEPER
	
	Slide 10
	FOLLOWING THE BOUNDARY
	MOVING AND DANCING
	MULTIPLE CHOICES
	MULTIPLE CHOICES
	WHILE-LOOPS
	
	
	Slide 18
	
	Slide 20
	
	
	Slide 23
	
	
	COMMENTS FOR HUMANS
	
	
	
	STEPWISE REFINEMENT

